mtDNA mutations increase tumorigenicity in prostate cancer.

نویسندگان

  • John A Petros
  • Amanda K Baumann
  • Eduardo Ruiz-Pesini
  • Mahul B Amin
  • Carrie Qi Sun
  • John Hall
  • SoDug Lim
  • Muta M Issa
  • W Dana Flanders
  • Seyed H Hosseini
  • Fray F Marshall
  • Douglas C Wallace
چکیده

Mutations in the mtDNA have been found to fulfill all of the criteria expected for pathogenic mutations causing prostate cancer. Focusing on the cytochrome oxidase subunit I (COI) gene, we found that 11-12% of all prostate cancer patients harbored COI mutations that altered conserved amino acids (mean conservation index=83%), whereas <2% of no-cancer controls and 7.8% of the general population had COI mutations, the latter altering less conserved amino acids (conservation index=71%). Four conserved prostate cancer COI mutations were found in multiple independent patients on different mtDNA backgrounds. Three other tumors contained heteroplasmic COI mutations, one of which created a stop codon. This latter tumor also contained a germ-line ATP6 mutation. Thus, both germ-line and somatic mtDNA mutations contribute to prostate cancer. Many tumors have been found to produce increased reactive oxygen species (ROS), and mtDNA mutations that inhibit oxidative phosphorylation can increase ROS production and thus contribute to tumorigenicity. To determine whether mutant tumors had increased ROS and tumor growth rates, we introduced the pathogenic mtDNA ATP6 T8993G mutation into the PC3 prostate cancer cell line through cybrid transfer and tested for tumor growth in nude mice. The resulting mutant (T8993G) cybrids were found to generate tumors that were 7 times larger than the wild-type (T8993T) cybrids, whereas the wild-type cybrids barely grew in the mice. The mutant tumors also generated significantly more ROS. Therefore, mtDNA mutations do play an important role in the etiology of prostate cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial DNA Haplogroup Analysis Reveals no Association between the Common Genetic Lineages and Prostate Cancer in the Korean Population

Mitochondrial DNA (mtDNA) variation has recently been suggested to have an association with various cancers, including prostate cancer risk, in human populations. Since mtDNA is haploid and lacks recombination, specific mutations in the mtDNA genome associated with human diseases arise and remain in particular genetic backgrounds referred to as haplogroups. To assess the possible contribution o...

متن کامل

Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer

Prostate cancer management is complicated by extreme disease heterogeneity, which is further limited by availability of prognostic biomarkers. Recognition of prostate cancer as a genetic disease has prompted a focus on the nuclear genome for biomarker discovery, with little attention given to the mitochondrial genome. While it is evident that mitochondrial DNA (mtDNA) mutations are acquired dur...

متن کامل

Role of Polymerase Gamma Mutations in Breast Tumorigenesis PRINCIPAL INVESTIGATOR:

Decreased mitochondrial oxidative phosphorylation (OXPHOS) is one of the hallmarks of cancer. To date the identity of nuclear gene(s) responsible for decreased OXPHOS in tumors remains unknown. It is also unclear whether mutations in nuclear gene(s) responsible for decreased OXPHOS affect tumorigenesis. Polymerase γ (POLG) is the only DNA polymerase known to function in human mitochondria. Muta...

متن کامل

Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management

Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and incre...

متن کامل

Nuclear but not mitochondrial genome involvement in 3-methylcholanthrene-induced expression of tumorigenicity in mouse somatic cells.

The involvement of heritable modifications of mitochondrial DNA (mtDNA) in chemical carcinogenesis was examined by studies on the effects on tumorigenicity of interchange of mtDNA between 3-methylcholanthrene (MCA)-induced mouse tumor cells and nontumorigenic mouse cells by the cytoplast-to-cell fusion technique. The difference in propagating abilities of two types of mouse mtDNA, type 1 mtDNA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 3  شماره 

صفحات  -

تاریخ انتشار 2005